Thuis
Contacten

    Hoofdpagina


Docent: drs. Rob Flohr

Dovnload 2 Mb.

Docent: drs. Rob Flohr



Pagina16/25
Datum05.12.2018
Grootte2 Mb.

Dovnload 2 Mb.
1   ...   12   13   14   15   16   17   18   19   ...   25

node mean sd MC error 2.5% median 97.5% start sample

theta 3.081 0.5377 0.01252 2.142 3.045 4.229 1 2000

ypred 3.095 1.819 0.03742 0.0 3.0 7.0 1 2000

=======================================================================


TOEPASSING:

In oktober 2009 verscheen in het dagblad Trouw een artikel over een onderzoek onder 121 ouderen in verpleeghuizen. In deze groep gaven 21 ouderen aan wel eens geïntimideerd te zijn geweest door medebewoners. Toen naar voren werd gebracht dat de steekproef vrij klein was, reageerde de onderzoeker met de opmerking: "If I had talked to more people, the result would have changed by one or two percent at the most".

Wat vind je van deze reactie?

list(k=24,n=121)


model{

k~dbin(theta,n)

theta~dbeta(1,1)

postpredk~dbin(theta,300)

}

model is syntactically correct



data loaded

model compiled



initial values generated, model initialized
Time series




Kernel density



Node statistics



node mean sd MC error 2.5% median 97.5% start sample

postpredk 60.69 12.77 0.1799 37.0 60.0 87.0 1 5000

theta 0.2025 0.03606 5.207E-4 0.1354 0.2013 0.2784 1 5000

Bij een steekproef van 300 zou de proportie variëren tussen 37.0/300 = 0.1233 en 87.0/300 = 0.29, de variatie bedraagt dan dus bijna 17%!

Huiswerkopgaven voor les 6

(1)
(a) Bepaal m.b.v. WinBUGS de posterior predictive distribution voor het voorbeeld van de uitgever ten aanzien van de verwachtingswaarde en de aantallen typografische fouten per 100 blz. van leerboeken statistiek.

Uitwerking:

model{


for (i in 1:n)

{

y[i]~dpois(theta)



}

theta~dgamma(0.01,0.01)

ypred~dpois(theta)

}
list(y=c(15,11,10,14,13,9,4,9,6,7,9,7,13,9,11,16,12,15,13,14,16,11,10,9,8),n=25)

model is syntactically correct

data loaded

model compiled

initial values generated, model initialized


Time series




Kernel density






Node statistics

node mean sd MC error 2.5% median 97.5% start sample

theta 10.83 0.6482 0.008688 9.586 10.81 12.14 1 5000

ypred 10.8 3.36 0.0478 5.0 11.0 18.0 1 5000

(b) Maak een histogram van de oorspronkelijke data en vergelijk die met het histogram van de gerepliceerde data.


> data=c(15,11,10,14,13,9,4,9,6,7,9,7,13,9,11,16,12,15,13,14,16,11,10,9,8)

> summary(data)

Min. 1st Qu. Median Mean 3rd Qu. Max.

4.00 9.00 11.00 10.84 13.00 16.00

> sd(data)

[1] 3.223352

> hist(data,nclass=16)



>


Gebruik daarnaast in WinBUGS: Inference -> Compare -> boxplot om beide verdelingen te kunnen vergelijken.






(2)

Men wil weten hoeveel tijd het kost om een frisdrankautomaat bij te vullen. Daartoe wordt een klein onderzoek uitgevoerd. De response variable (de afhankelijk variabele) is de tijd in minuten om het apparaat bij te vullen en bijkomende handelingen te verrichten. Er wordt vanuit gegaan dat er twee hoofdfactoren zijn die de benodigde tijd bepalen, namelijk het aantal producten dat aangevuld moet worden en de afstand die de werknemer moet afleggen om bij het apparaat te komen (gemeten in aantal feet).


Er worden 25 observaties verzameld met betrekking tot de benodigde tijd, het aantal producten en de afgelegde afstand. Op basis van deze data wil men een norm vaststellen voor de benodigde tijd.

Open het bijgevoegde odc-bestand in WinBUGS , voer het programma uit en formuleer je conclusies.

Op basis van het 95% credible interval van typical.y zou de bedientijd gemiddeld tussen de 21 en 24 minuten moeten liggen.

1   ...   12   13   14   15   16   17   18   19   ...   25

  • node mean sd MC error 2.5% median 97.5% start sample

  • Dovnload 2 Mb.